
Property Graph Schema
Working Group: Where we are

today, and what’s next
Jan Hidders (Birkbeck, University of London)

Juan Sequeda (data.world)

LDBC project, benchmark papers & meetings

2012 2013 2014 2015 2016 2017 2018 2019 2020

1 2 3 4 5 6 7 8 9 10 11 12 13

Graphalytics
VLDB 2016

SPB
BLINK 2016

SNB Interactive
SIGMOD 2015

Datagen + deletions
GRADES 2020

ACID tests
TPCTC 2020EU FP7 project

TUC meetings
Benchmark papers

2021

SNB BI draft
GRADES 2018

LDBC: member companies and institutes

2014: LDBC Graph Query Language WG
LDBC starts working group

Industry: Neo4j, SAP, Oracle, Capsenta

Academia: Univ. de Talca, PUC Chile, Univ. de

Chile, CWI Amsterdam, TU Eindhoven,

TU Dresden

2017: G-CORE
Results in proposal for core language: G-CORE

https://arxiv.org/pdf/1712.01550.pdf

Published in SIGMOD 2018

Regarded as useful exercise by all sides

July 2018: Shonan Seminar
Shonan Seminar: Graph Database Systems

GQL Community started, continue G-CORE work

More open community, also covers data model

https://arxiv.org/pdf/1712.01550.pdf

March 2019: W3C workshop
W3C workshop on graph data -- Creating

Bridge: RDF, Property Graph, and SQL, Berlin

PGSWG started

September 2019: WG3 starts GQL
ISO/IEC JTC 1/SC 32/WG3 gets backing from

ISO/IEC to start on GQL and SQL/PGQ:

(1) SQL/PGQ : extension of SQL

(2) GQL : stand-alone query language

September 2020: Formal link LDBC and WG3
LDBC Liaisons attend WG3 meetings

GQL comm. and WG3 can exchange documents

LDBC membership is now required to participate

DISCLAIMER

● Community Group: group of people from industry and academia who are
interested in graphs

● Our work is only advisory: WG3 is not bound by our advice
● Possible deliverables

○ Recommendations to WG3
○ Academic collaboration
○ Academic-Industry collaboration
○ Open source software

● We do not always aim for consensus
● Anyone can join!

GQL Community WGs

Existing Languages

Surveys existing query

languages

Formal Semantics

 Formal semantics of

GQL

ELWG

Property Graph

Schemas Syntax and

semantics of schema

language.

PGSWG FSWG

PGSWG subgroups

Basic constructs

and semantics

Basic

Key constraints and

cardinality

constraints

Constr

Data types for

properties

Prop

Null values

Nulls

Property Graph

Schemas

PGSWG

Property Graphs as defined by PGSWG
name: “Omar B.”
born: 1987

Person House, Studio

address: “....”
surface: 34m2

begin: 2014

livesIn

House, Apartment

address: “....”
rooms: 3
surface: 60m2

name: “Charles E.”
born: 1987

Person, Student

name: “Stephen H.”
born: 1989

Person

is
Fr

ie
nd

O
fisFriendO

f

knows
knows

livesIn

rents fees: 300€
begin: 2011
end: 2013

Basic Data Model
Assumptions (1/4)

name: “Omar B.”
born: 1987

Person House, Studio

address: “....”
surface: 34m2

livesIn

name: “Omar B.”
born: 1987

Person
livesIn

Duplicate nodes and edges are allowed.

Basic Data Model
Assumptions (2/4)

name: “Omar B.”
telephone: +32 01 944 3453
telephone: +44 20 3167 3521

Person

Properties with identical names are not allowed.

Basic Data Model
Assumptions (3/4)

species: “Human”
name: “Omar B.”
telephone: +44 20 3167 3521

Nodes and edges with no labels are allowed.

Basic Data Model
Assumptions (4/4)

Edges only connect nodes.

House, Apartment

address: “....”
rooms: 3
surface: 60m2

name: “Stephen H.”
born: 1989

Person rents

Agency

m
anagedBy

Main goals

Keep it simple where possible

Give it a formal semantics, ideally based on a well-understood formalism

Allow simple light-weight schemas as well as full-blown database schemas

Cover the range from closed schemas (fully fixing the vocabulary) to open schemas (only partially or not fixing the vocabulary)

Facilitate gradual migration between graphs with no prescriptive schema, via a partially prescriptive schema, to a fully prescriptive schema

Familiar through similarity to existing conceptual data models: EER, UML Class diagrams, ORM2, …

The basic structure of a schema

A schema is a set of node types and ..

$person = (:Person { name::STRING, birthdate::DATE })
$city = (:City Place { name::STRING, url::URL })
$country = (:Country Place { name::STRING, url::URL })
$continent = (:Continent Place { name::STRING, url::URL })

.. a set of edge types

$livesIn = (:$person)-[:livesIn { start::DATE }]->(:$city)
$worksIn = (:$person)-[:worksIn { start::DATE }]->(:$city)
$cityLiesIn = (:$city)-[:liesIn]->(:$country)
$countryLiesOn = (:$country)-[:liesOn]->(:$continent)

Basic semantics: every node and edge must conform to a type.

Graph Representation of Schema

name: STRING
birthdate: DATE

Person City, Place

name: STRING
url: URL

start: DATE

livesIn

Country, Place

name: STRING
url: URL

name: STRING
url: URL

Continent, Place

worksIn

liesIn

liesOn

start: DATE

Well-advanced discussions

Property Types

● Node and Edges types, Record types, collection types (array),
basic types (int, varchar, etc)

● Partial alignment with SQL types
● Metaproperties: all property values and their subvalues can be annotated with

meta-properties
$person1 = (:Person { name::STRING, birthdate::DATE })

$person2 = (:Person { name::STRING, birthdate::{
 day::STRING,
 month::STRING,
 year::STRING } })

$livesIn = (:$person)-[:livesIn { start::DATE }]->(:$city)

Data types for

properties

Prop

$city = :City {
 name STRING,

 population INTEGER @{

 point_in_time DateTime @{ confidence_score FLOAT },

 determination_method STRING

 }

}

Meta-properties for ‘population’

Meta-properties for ‘point_in_time’properties

19

Metaproperties

Key constraints

● Simple key constraints: sets of properties
● Complex key constraints: nodes and edges are identified by combinations of

directly or indirectly connected properties and nodes
● See paper: PG-Keys: Keys for Property Graphs. SIGMOD Conference 2021

Key constraints

and cardinality

constraints

Constr

FOR x WITHIN

IDENTIFIER y, z WITHIN

Design requirements

1. Flexible choice of key
scope and descriptor of
key values.

2. Keys for nodes, edges,
and properties.

3. Identify, reference, and
constrain objects.

4. Easy to validate.

PG-Keys

Declaratively specify the scope of the key and its values in your favourite PG

query language (a parameter of PG-Keys). Here we use Cypher-like syntax.

For instance

FOR p WITHIN (p:Person) IDENTIFIER p.login;

says that “each person is identified by their login”, and

FOR f WITHIN (f:Forum)<-[:joined]-(:Person)

IDENTIFIER f.name, p WITHIN (f)<-[:moderates]-(p:Person);

says that “each forum with a member is identified by its name and moderator”.

Flexible choice of scope and key values

Cardinality constraints

● Simple cardinality constraints: cardinality constraints on edge types
(upper/lower bounds) → ER Diagrams

● Complex cardinality constraints: upper and lower bounds for results of graph
patterns → Nodes in a selected graph pattern

Person must live in at least one city:
$livesIn = (:$person)=[:livesIn[M:1] { start::DATE }]=>(:$city)

Person can work in multiple cities.
$worksIn = (:$person)-[:worksIn[M:N] { start::DATE }]->(:$city)

Key constraints

and cardinality

constraints

Constr

Schema flexibility

● In node, edge types we can mark properties as optional
● We can indicate that a node and edge type is open:

extra properties are allowed
$person1 = (:Person { name::STRING, birthdate?::DATE })

$person2 = (:Person { name::STRING, birthdate::DATE, .. })

(:Person { name::”Juan”}) YES $person1 NO $person1

(:Person { name::”Juan”, birthdate::”17-10-1985”, email::”juan@data.world”
}) NO $person1 YES $person1

Key constraints

and cardinality

constraints

Constr

Data types for

properties

Prop

Overlapping types

● The chosen semantics does not allow meaningful overlap of types
● An analogue to overlapping subtypes in conceptual data models (e.g., EER

and UML diagrams) has been added where types can be explicitly indicated
as combinable

$manager = (:Manager { name::STRING})

$engineer = (:Engineer { name::STRING})

(:Manager :Engineer { name::”Juan”}) NO

HOWEVER...

$manengineer = (:Manager :Engineer { name::STRING})

(:Manager :Engineer { name::”Juan”}) YES

Basic constructs

and semantics

Basic

Just-started discussion

Nominalised vs structural type behavior

● Types with different names do not overlap
● SQL does this in some places
● Do we want / need it?

Data types for

properties

Prop

Union Types

● Tagged union vs untagged union
● Alternative for NULL values?
● Too powerful?
● Necessary for deriving descriptive type?

Data types for

properties

Prop

NULL value(s)

● SQL/PGQ will have to deal with them
● Covered by optional properties?
● 3-valued logic?

Data types for

properties

Prop

Derivation of descriptive schema

● Derive a schema if there is none
● For type inference
● For starting prescriptive schema

Basic constructs

and semantics

Basic

Type inference for schemas

● Determine well-typedness of query
● Determine structure of query result Basic constructs

and semantics

Basic

Final Thoughts

Juan’s Final Thoughts

● Balance of Academia vs Industry … too many chefs in the kitchen?!?!?
○ Energy, Time Commitment

● Boiling the ocean … ok?!?!?
○ Going into deep holes?
○ Who cares about them?

● First arrive to understand the different POV before even considering
consensus

● RDF Schema “done” right?
● Socio-technical Research opportunities

Jan’s Final Thoughts

● Interaction with ISO’s WG3 is very encouraging
○ But requires compromises

● Creating a community is hard, but very rewarding
○ Wide variety of (quite strong) opinions
○ Has resulted in new and productive cooperation

● Database models vs Conceptual data models
○ Graph-based data models claim to approximate conceptual data models
○ Do they?
○ Should they?

Conclusion

● This is not easy
○ Humans and subjectivity
○ Judgement calls
○ Balance between programming and database world

● We are reusing existing established ideas (i.e. not reinventing the wheel)
● Open up the closed world of ISO standards

“We choose to go to the Moon in this decade and do
the other things, not because they are easy, but
because they are hard” - JFK

THANK YOU!

