
Knowledge Graph publication and browsing
using Neo4J?

Ghislain Atemezing1[0000−0003−1562−6922] and Anh Huynh1

MONDECA, 18 rue de Londres, 75009, Paris, France.
firstname.lastname@mondeca.com

Abstract. Publishing 5-stars datasets on the Web requires RDF triple
stores as the backend for managing knowledge graphs. Some most pop-
ular endpoints for serving RDF include OpenLinkSW Virtuoso, Apache
Jena/Fuseki, Ontotext GraphDB, and Stardog. However, in some cases
in enterprise settings, publishers using graph databases such as property
graphs (PG) also need to publish their RDF data assets on the Web. This
paper proposes a Knowledge Browser (aka KBrowser), a tool for publish-
ing and browsing multilingual RDF knowledge graphs using Neo4J as
backend. The first experiments on loading RDF files show promising
results on sample relatively large open RDF datasets. We report two
successful deployments of KBrowser for publishing taxonomies on the
Web.

Keywords: Knowledge Browser · Neo4J · Taxonomy Portal · RDF ·
Graph Databases.

1 Introduction

Knowledge graphs (KGs) are critical to many enterprises as they provide the
structured data and factual knowledge to enable smart applications [6]. Seman-
tic Web technologies provide open standards to create reference schema or on-
tology, and the RDF model to generate KGs in terms of triples generally stored
in triple stores. In the recent years, graph databases using property graph (PG)
models [1] have contributed to partially solved some weaknesses in RDF land-
scape, such as the ability to easily annotate properties, to make traversal queries
and visual appealing graph relations and nodes. RDF triple stores and property
graph databases are two approaches for data management which are based on
modeling, storing and querying graph-like data. Our research question is the
following: How can we integrate a PG database in the publication pipeline of an
enterprise KG encoded in RDF? Our contribution is three-fold: (1) We propose
a set of mappings from RDF to Neo4J, (2) We implement and evaluate an RDF
loader to Neo4J and (3) We showcase two terminology portals on the Web using
our proposal.

This paper presents KBrowser, a pipeline tool leveraging a PG database (aka
Neo4J) to publish and visualize any KG encoded in RDF. Section 2 presents

? Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

2 G. Atemezing and A. Huynh

the mappings used for our implementation, followed by the description of the
architecture (section 3). Section 4 presents the loading experiments, completed
by applications in Section 5. We conclude the paper in Section 7 after a brief
discussion (Section 6).

2 Mapping rules

Our model defines three main rules for mappings from the RDF dataset to Neo4J
PG model.

Rule 1 Subjects of triples are mapped to nodes in Neo4j. A node in Neo4j rep-
resenting an RDF resource will be labeled :Resource and have a property uri with
the resource’s URI. (S, P,O) => (: Resource{value : S, kind : uri})...

Example 1. Let’s consider the following triples1

dbr:Mondeca rdf:type dbo:Agent, dbo:Organisation .

When applying rule 1 above, we obtain the following Mondeca subject resource:

(: Resource { value : ’ dbr : Mondeca ’ , kind : ’ ur i ’ })

Rule 2 Predicates of triples are mapped to relationships in Neo4j if the object of
the triple is a literal. (S, P,O)&&isLiteral(O) => (: Resource{value : S, kind :
uri})− [: P] − > (: Resource{value : O, kind : literal})

This rule is generic enough to handle multi valued properties, data types of
literals, multilingual values in literals. Therefore, it is much easier to add in a
given node the properties of Neo4J such as language tag, and type of a literal.

Example 2 (Representing multilingual information). In the following triples:

dbr:Mondeca rdfs:label "Mondeca"@fr ,

"Mondeca"@en.

When applying this rule, we get the output below:

(: Resource { value : ’ dbr : Mondeca ’ , kind : ’ ur i ’}) − [: ’ r d f s : l abe l ’ ‘]−>
(: Resource { value : ’ Mondeca ’ , kind : ’ l i t e r a l ’ , lang : ’ f r ’})
(: Resource { value : ’ dbr : Mondeca ’ , kind : ’ ur i ’}) − [: ’ r d f s : l abe l ’]−>
(: Resource { value : ’ Mondeca ’ , kind : ’ l i t e r a l ’ , lang : ’ en ’})

Rule 3 Predicates of triples are mapped to relationships in Neo4J if the object of
the triple is a resource. (S, P,O)&&!isLiteral(O) => (: Resourcevalue : S, kind : uri)−
[: P]− > (: Resource{value : O, kind :′ uri′})

Example 3. In the following example:

1 Namespaces used are the ones defined in the DBpedia N3 file

Knowledge Graph publication and browsing using Neo4J 3

dbr:Mondeca dbo:location dbr:Paris.

. After applying the third rule, we get the following output:

(: Resource { value : ‘ dbr : Mondeca ‘ , kind : ‘ ur i ‘}) − [: ‘ dbo : l o ca t i on ‘]−>
(: Resource { value : ‘ dbr : Paris ‘ , kind : ‘ ur i ‘ })

3 KBrowser architecture overview

KBrowser is deployed on a Web Server. The Graph Database is Neo4J, with
Cypher used as the internal query language. It uses the implementation to load
RDF data defined with the mappings in Section 2. Elasticsearch (ES) is used as
the search engine. The REST API module allows transparent management of
the repositories, graphs and search strategies. RDF is the exchange data model
between the components. The overall architecture is depicted in Figure 1. Our
implementation of the RDF import into Neo4J is bundled into KBrowser before
the indexing phase by ES.

Fig. 1: KBrowser Architecture Overview

4 Experiments

We report an evaluation of loading time with our first implementation in Java
of the plugin to load RDF sample data into Neo4J. In this experiment, we use
Neo4J 3.5.6 community edition with the following configuration of the memory

4 G. Atemezing and A. Huynh

heap size of 8GB and page cache memory of 1GB. For each loading process, we
go through the following steps:

– Step 1: Connect to Cypher shell with an empty database.
– Step 2: Creation of 5 indexes as follows:

create index on :INDEXED(p); create index on :INDEXED(c);

create index on :INDEXED(cp);create index on :INDEXED(kind);

create index on :INDEXED(value);

– Step 3: Call the procedure with three parameters: the file, the serialization,
and the number of triples per transaction set to 50K triples.

We use for testing our import procedure one ontology (schema.org)2 and random
sample RDF dumps datasets of DBpedia from 20153.

0.2 0.4 0.6 0.8 1 1.2

·107

0

100

200

300

400

500

600

Number of triples

L
oa
d
in
g
ti
m
e
in

se
co
n
d
s

Number of triples vs loading time

loading time of RDF datasets

5 Applications scenario

KBrowser is mainly used as a web-based portal to provide read-only access to
large audiences of users who need to visualize, search, navigate and browse col-
lections of enterprise data and content. This section reports two successful de-
ployments portals in the domain of finance (TerMef) and eHealth (Bioloinc).
The portals are powered by KBrowser and are accessible online.

2 https://schema.org/docs/developers.html
3 http://downloads.dbpedia.org/2015-10/core-i18n/en/

https://schema.org/docs/developers.html
http://downloads.dbpedia.org/2015-10/core-i18n/en/

Knowledge Graph publication and browsing using Neo4J 5

5.1 TerMef portal

The TerMEF4 KBrowser is published by the French Ministry of Finance. It sup-
ports the publication and dissemination on the Web of the ministry’s controlled
vocabularies to a broad audience of analysts and domain experts.

(a) Tabular view of a concept (b) Graph visualization

The portal offers to users a list of groups of concepts, facets lists and a naviga-
tion view as depicted in Figures 2a and 2b. It is composed of 21 SKOS:ConceptScheme
representing different domains. The portal contains nearly 200K triples.

5.2 Bioloinc portal

ASIP Santé (French Agency for Digital Health)’s KBrowser instance is used as
the French reference Terminology Server for the publication, dissemination and
reuse of the international BIOLOINC terminology. LOINC is a reference ter-
minology created and maintained by the Regenstrief Institute [4]. Nowadays,
LOINC is a clinical terminology used for recording health measurements, obser-
vations, and documents. The portal5 supports health stakeholders in implement-
ing consistent indexing of patient records as defined by the nationwide shared
medical records initiative. The deployed server uses a maximum memory of 4GB,
with less than 1 million triples. KBrowser serves approximatively 54, 500 French
LOINC terms and almost 1, 019 nomenclature of medical biology procedures.

6 Discussion

This work was inspired by the work of Neo4J Labs [3] and the Tinkerpop sail
view approach.6. The main difference of our mappings compared to the work
in [3] is the generic approach for handling multilingual information contained
in the RDF. Additionally, we argue that the proposed mappings deal with any
type of RDF asset, including OWL ontologies. Our mapping is also closed to

4 http://terminologie.finances.gouv.fr/
5 https://bioloinc.fr/
6 https://github.com/tinkerpop/blueprints/wiki/Sail-Implementation

http://terminologie.finances.gouv.fr/
https://bioloinc.fr/
https://github.com/tinkerpop/blueprints/wiki/Sail-Implementation

6 G. Atemezing and A. Huynh

the database schema independent matching from RDF to PG described in [2].
Nevertheless, we do not have yet a mechanism to validate the data inserted
into Neo4J. This can be mitigated by doing such tasks (reasoning, validation)
in the RDF before loading into Neo4J. The time spent for loading is promising
with less than a hundred million triples. Nevertheless, we need to improve our
loader implementation to cope with billions of triples with a relatively decent
memory. KBrowser usage as Web portals support search functions and visual
graph visualizations appealing to users.

7 Conclusions

This work contributes to bridge the gap of consuming RDF datasets in Neo4J.
We proposed a set of mappings from RDF to Neo4J, with an implementation
to load any serialization of RDF for querying in Cypher. KBrowser is used as
a pipeline for publishing RDF enterprise assets, browsing and searching on the
Web. We present two use cases of portals supporting our approach.

Among the limitations of the system presented in this paper we can mention:
the hypothesis of not handling Blank Nodes; the high memory consumption and
speed of the loader when handling billions of triples. Future works include the in-
tegration of loading RDF-star datasets according to the recent specifications [5],
and a thorough evaluation of existing proposals in the literature. The adoption
of RDF-star will reduce the gap between RDF and PG databases, but it will
not necessarily solve use cases of integrating RDF data into graph databases, or
making fully accessible SPARQL endpoints with PG backends.

Acknowledgments. This work has been partially funded by the project “Dis-
information Identification in Evolving Knowledge Bases” (DIEKB) under grant
n° DGA01D19018444.

References

1. Angles, R.: The property graph database model. In: AMW (2018)
2. Angles, R., Thakkar, H., Tomaszuk, D.: Mapping rdf databases to property graph

databases. IEEE Access 8, 86091–86110 (2020)
3. Barrasa, J.: A step-by-step example of rdf to property

graph transformation (2016), https://jbarrasa.com/2016/09/09/
quickgraph3-a-step-by-step-example-of-rdf-to-property-graph-transformation/

4. Forrey, A.W., Mcdonald, C.J., DeMoor, G., Huff, S.M., Leavelle, D., Leland, D.,
Fiers, T., Charles, L., Griffin, B., Stalling, F., et al.: Logical observation identifier
names and codes (loinc) database: a public use set of codes and names for electronic
reporting of clinical laboratory test results. Clinical chemistry 42(1), 81–90 (1996)

5. Hartig, O., al. (eds): Rdf-star and sparql-star (June 2021), https://w3c.github.io/
rdf-star/cg-spec

6. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale
knowledge graphs: lessons and challenges: five diverse technology companies show
how it’s done. Queue 17(2), 48–75 (2019)

https://jbarrasa.com/2016/09/09/quickgraph3-a-step-by-step-example-of-rdf-to-property-graph-transformation/
https://jbarrasa.com/2016/09/09/quickgraph3-a-step-by-step-example-of-rdf-to-property-graph-transformation/
https://w3c.github.io/rdf-star/cg-spec
https://w3c.github.io/rdf-star/cg-spec

	Knowledge Graph publication and browsing using Neo4J

