
Using automotive property graph-based data
models in a knowledge graph

Aidan O’Mahony[0000−0001−8413−9656], Alan Barnett[0000−0001−9658−2380], and
Merry Globin[0000−0002−0573−3962]

Dell Technologies, Cork, Ireland {firstname.surname}@dell.com

Abstract. Data vocabularies facilitate the organization and retrieval of
knowledge. As the volumes of data being generated in the internet age
is exploding, the need for structuring data such that automated orga-
nization can occur is becoming even more crucial to manage this data.
A popular method of searching this data in the context of a vocabulary
is through the use of graph theory. This paper describes the scenario
where, through the use of a data vocabulary for describing automotive
data based on labeled property graphs, data is modified such that it is
stored in a knowledge graph. The difficulties that were encountered in
this effort and how they were overcome are also discussed.

Keywords: Vocabulary · Triple Store · Property Graph · Knowledge
Graph.

1 Introduction

Knowledge graphs can be defined as databases in which the data is modeled as
graphs, relying on schemas and vocabularies, and data operations are expressed
through graph-oriented operations [1] [2]. The two most mature types of graph
technologies are labeled property graphs and semantic graphs [3] and in order to
make use of these there is also the need for a data model, syntax, vocabulary and
entity IDs. One of the primary providers of data models is the FIWARE founda-
tion [4], which provides smart data models for property graphs, and Schema.org,
which provides semantic graph-based data models. The challenge is when one
graph-based data model is more expressive than the equivalent model in the
other graph type. This problem was encountered as part of the Horizon 2020
project MOSAICrOWN [5] when attempting to make use of vehicle data in a
structured manner. The goal of MOSAICrOWN is the creation of a privacy pre-
serving data market. Vehicle and driver information is ingested into the data
market where metadata is stored in a graph and the non-metadata is stored in
an object store. A high-level diagram of the data market is presented in Figure 1.
In this paper the problem of associating the metadata with context and storing
it in a graph is also described.

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



2 O’Mahony et al.

Fig. 1. The MOSAICrOWN data market concept

Section 2 presents the related work already carried out in the area of property
graph and semantic graph ontologies. Section 3 discusses in more detail what
the technologies are, such as NGSI-LD and JSON-LD. In Section 4, the problem
is discussed in more detail and also how the problem was overcome. Finally, in
Section 5 conclusions are discussed.

2 Related Work

2.1 Knowledge Graphs

There are two main knowledge graph types: labeled property graphs and seman-
tic graphs. Both types are comprised of nodes and edges, where nodes represent
objects and edges represent those object’s relationships to each other. Property
graph nodes contain key-value pairs (properties) which are used to represent an
entity/object, and use node traversal and querying languages such as “Grem-
lin” or “Cypher”. The edges of both types of graph are represented as directed
labeled edges between nodes; an arrow indicates the direction of the relation-
ship. The supported datatypes of properties can vary depending on the property
graph implementation and can range from primitive datatypes to nested objects
and arrays. Additionally, some property graphs support property annotations,
sometimes referred to as property metadata. Semantic graphs, such as Resource
Description Framework (RDF), which uses open-standard SPARQL [6] query
language. RDF graphs use a “triple” structure to represent the graph. The effect
of this structure is that vertices on the graph are used to represent entities and
literals, and edges are the relationships between them.

Labeled Property Graphs A simple explanation of using an ontology to
build a property graph schema is to imitate the process of mapping a rela-
tional schema from an entity relationship diagram. To do this one must map all



Using automotive property graph-based data models in a knowledge graph 3

concepts within the ontology to a node of the schema, as well as map the rela-
tionships to edges of the schema [7]. The labeled property graphs data model is
commonly used for the purpose of encoding data into knowledge graphs due to its
speed of graph traversals, data storage mechanism efficiency and its adaptability
in modeling domains. Real-time queries can be particularly resource consuming
and such queries in the context of knowledge graphs are no exception. Labeled
property graphs are a method of facilitating analytical operations on graphs at
scale [7]. Edges and nodes are used here to describe cross-entity relations. La-
beled Property Graphs use a property value structure corresponding to entities
which models them in a concise format [6]. Whilst both property graphs and
semantic graphs have directed labeled edges, only certain property graphs allow
annotations to be associated with the label. Figure 2 presents an example of a
labeled property graph.

Fig. 2. Labeled Property Graph

Semantic Graphs Semantic graph nodes can be internationalized resource
identifiers (IRIs), blank nodes, or literals : IRIs are a generalization of universal
resource identifiers (URIs), and only simple literal datatypes such as strings or
dates are supported. Properties of an object are implemented in the graph as
individual linked nodes. Semantic graphs, like property graphs, have directed
edge labels. Edge labels in semantic graphs are IRI defined predicates that allow
inferences to be drawn between nodes based on rules defined in the ontology. In
the example illustrated in Figure 3, the “brother” predicate linking the subject
Alice to the object Bob, the “gender” predicate linking the subject Alice to the
object Female, and rules from a suitable ontology, can be used to infer that Alice
is also the sister of Bob and that Bob is Male.

2.2 Resource Description Framework

Resource description framework (RDF) is a common standard for defining Se-
mantic Graphs, the alternative graph data model to Labeled Property Graphs
described earlier in this section. RDF enables the exchange of data, particularly



4 O’Mahony et al.

Fig. 3. Semantic Relationship Between Nodes

used for describing metadata regarding objects, system structures or almost
any entity - concrete or abstract. The transfer and usage of these descriptions,
‘resources’ in RDF terminology, is enabled in machine-interpretable form while
preserving the meaning of the descriptions. Edges and nodes are used in RDF for
entity relation description [6]. RDF describes structures called “triples” which
are information consisting of an object and a subject, which are linked by a
predicate. The order of a triple is subject-object-predicate. RDF uses triples to-
gether with ‘internationalized resource identifiers’ (IRIs). The subjects, objects
and predicates within triple structures are given IRIs for identification, but also
to denote a link between items via a shared IRI. In scenarios where triples are
grouped into separate named graphs a fourth parameter which denotes a graph
name is added to the triple structure. The structure is then named a ‘quad’ due
to the presence of four parameters.

Within RDF there is a concept called reification. Reification entails adding
metadata to resources. Four primary types of reification are detailed in [8] –
“Reifying RDF: What Works Well With Wikidata?”. Standard reification in-
volves denoting a triple via another RDF resource, whose attributes are the sub-
ject, object and predicate of the triple being denoted. Metadata can be added to
these triples to provide more detailed descriptions. N-ary relations are a type of
reification that leverages intermediate resources, on what originally would have
been an edge describing a relationship. These intermediate resources are anno-
tated with metadata for increased detail over a standard edge. Singleton proper-
ties enable the addition of metadata by using unique, per-statement, predicates
which describe relationships by linking with “high-level predicates” [8]. Named
Graphs reification is the process of adding a graph IRI to a triple, thus creating
a quad structure which metadata can be added to [8].



Using automotive property graph-based data models in a knowledge graph 5

2.3 RDF-star: Use Case: Ontologies and RDF-star for Knowledge
Management

RDF-star is an extension to the standard RDF model which facilitates the asso-
ciation of annotations, or metadata, to RDF triple structures – this is achieved
by adding descriptive data to the graph edges which describe relationships. This
enables additional properties to describe resources to be added without requiring
reification – which aims to provide a querying performance boost in bypassing
the reification process. The performance impact of RDF-star is described in [9] –
“Use Case: Ontologies and RDF* for Knowledge Management” where the state-
ment is made that an elegant graph database can halve the loading times of
data-sets containing sizable quantities of the metadata. Reasonably, this perfor-
mance increase is tied to the amount of such metadata existing in the dataset
[9]. The expansion from RDF to RDF-star necessitated an expansion of the
SPARQL query language’s semantic and syntax, called SPARQL-star.

2.4 Semantic Property Graphs

Semantic Property Graphs (SPGs) are an interesting emergent technology, al-
though it is presently not quite mature enough for this use case. SPGs are a
means of achieving “model-attributed semantic graphs”. The creators describe
it as a fusion between the labeled Property Graph and Resource Description
Framework models for graph data description. The SPG provides adaptability
while retaining efficiency in storage and compute usage when performing anal-
ysis and traversals of graphs. The SPG approach is underpinned by the RDF
ontology – with a substantial reduction in the structure of the graph, coupled
with file size serializing that preserves information pertinent to graph analysis.
The concept of an SPG is described as a “framework to project reified RDF
graphs into the property graph model” [6].

2.5 Summary

RDF with semantic graphs was the technology selected, due to several factors;
RDF is based on an open standard and is highly interoperable. The requirement
to integrate with a policy engine whose policies are written in RDF was of sig-
nificant influence. Aside from its inherent usefulness as a description framework,
RDF also has a range of useful open source tooling, such as JSON-LD conver-
sion, which can be leveraged. Lastly, RDF can be used to implement the W3C
policy schema “Open Digital Rights Language” (ODRL). RDF-star was a recent
technological development at the time of specifying this system and, moreover
the system had no specific requirement for RDF-star. Future, more expressive,
requirements of the system may require a move to RDF-star, as RDF-star is
built upon RDF, there is a clear upgrade path.



6 O’Mahony et al.

3 Data Formats

This section gives a brief description about the data formats that were evaluated
as part of this project, i.e, JSON-LD, NGSI-LD and N-Triples.

3.1 JSON-LD

JSON-LD (JavaScript Object Notation for Linked Data) is a light-weight syntax
based on JSON to serialize linked data in JSON and it provides a format readable
by both machines and humans. One drawback of JSON is its ambiguity, i.e., as
JSON represents data in key-value pairs, where the key used in one context may
have different meaning in another context. JSON-LD overcomes this ambiguity
issue with mapping the keys to IRIs via a context. Also, JSON-LD provides a
universal identifier via the use of IRIs to the JSON object [10]. In other words,
JSON-LD gives meaning to the JSON data. An example of JSON-LD is given
in Figure 4.

1 {
2 "@context":"https:// schema.org/",

3 "@type":"Car",

4 "name":"Exemplary Car Model Name",

5 "manufacturer":"Exemplary Car Manufacturer",

6 "steeringPosition":{"@id":"https:// schema.org/
LeftHandDriving"}

7 }

Fig. 4. An example of JSON-LD representation of a Car

The “@context” keyword defines the semantic structure of the message and
is the one which maps key, name, to the IRI. The “@id” keyword is the universal
identifier to the JSON object. Additionally, JSON-LD can have other keywords.
For example, “@type” keyword is the type of object/data. The value of @type
will be explained in the context of JSON-LD data where it expands into full
URL.

3.2 NGSI-LD

NGSI-LD (Next Generation Service Interfaces for Linked Data) is an open spec-
ification released by ETSI (European Telecommunications Standardization In-
stitute) for context information/data modeling and APIs to produce, consume
and subscribe context information [11]. NGSI-LD has Entity, Property and Rela-
tionship. Entity can be the subject and properties are represented as type-value
pairs. Relationship is the association between the entities [12]. The NGSI Vehicle



Using automotive property graph-based data models in a knowledge graph 7

data model has three different formats: normalized, key-value pair, and linked
data. The linked data format is based on JSON-LD [13].

An example of NGSI-LD is given in Figure 5: As in JSON-LD, “@context”

1 {
2 "@context": [

3 "https://smart -data -models.github.io/dataModel.

Transportation/Vehicle/schema.json",

4 "https://uri.etsi.org/ngsi -ld/v1/ngsi -ld -core -context.

jsonld"

5 ],

6 "id": "urn:ngsi -ld:Vehicle:1fa179a6-b507-4857-ad72-eb5513ef

05c6",

7 "type": "Vehicle",

8 "location": {
9 "type": "GeoProperty",

10 "value": {
11 "type": "Point",

12 "coordinates": [13.3986, 52.5547]

13 }
14 },
15 "fuelType": {
16 "type": "Property",

17 "value": "Diesel"

18 },
19 ...

20 }

Fig. 5. An example of NGSI-LD representation of a car

keyword defines the semantic structure of the message and maps the entity to
the IRI. The “id” keyword is the universal identifier to the entity, Santa Claus.
The “type” keyword specifies the type of the object. As mentioned, the property,
“name”, is expressed as type-value pair. The entity has a relationship, “spouse”,
which in turn is another entity.

3.3 N-Triples

N-Triples is a data format for encoding RDF graphs and is line-based. As men-
tioned in Section 2.2, RDF triples consists of subject, predicate, and object.
N-Triples triples is a set of RDF triples [14].

An example of N-Triples is given in Figure 6. The example can be read as sub-
ject, “<urn:ngsi-ld:Vehicle:1fa179a6-b507-4857-ad72-eb5513ef05c6>”, has predi-
cate, “http://schema.org/bodyType”, and object, “hatchback”. As in JSON-LD
and NGSI-LD, IRIs are used as term identifiers in N-Triples as well.



8 O’Mahony et al.

1 <urn:ngsi -ld:Vehicle:1fa179a6-b507-4857-ad72-eb5513ef05c6> <

http:// schema.org/bodyType > "hatchback" .

2 <urn:ngsi -ld:Vehicle:1fa179a6-b507-4857-ad72-eb5513ef05c6> <

http:// schema.org/color > "White" .

3 <urn:ngsi -ld:Vehicle:1fa179a6-b507-4857-ad72-eb5513ef05c6> <

http:// schema.org/name > "Exemplary Car Model Name" .

Fig. 6. An example of N-Triples representation of car

4 Automotive FIWARE Data Models Stored in
Knowledge Graphs

The choice of the data model used was guided primarily by the source of the au-
tomotive data. In this case, the data source was provided by the third-party auto-
motive Application Programming Interface (API) provider “High-Mobility” [15].
Using this API mechanism allows for data access via a REpresentational State
Transfer (REST) API and the data is provided as “application/json” response
content type. After a review of the available data models, the FIWARE vehi-
cle data model [16] had the most data points represented as required by the
“High-Mobility” response. Figure 7 shows an illustration of the process involved
in ingesting the JSON data from the vehicle, associating it with the FIWARE
data model, using a custom ICV data model, converting the NGSI-LD to RDF
Triples, and then storing the RDF Triples in a knowledge graph. The custom
ICV schema facilitates the integrating of vehicle attributes such that the meta-
data can be associated with the policy language designed as part of the MO-
SAICrOWN Horizon 2020 project. The input vehicle data depends on the fact
that every vehicle has a unique Vehicle Identification Number (VIN) [17] which
allows for the connection of each node in the graph to a unique node for each
vehicle.

Fig. 7. Ingestion process taking JSON data, converting to NGSI-LD and then convert-
ing to RDF Triples



Using automotive property graph-based data models in a knowledge graph 9

4.1 Detailed Vehicle Data Ingestion

The data supplied by the “High-Mobility” API is in JSON format without any
context information. In this format, illustrated in Figure 8, it is difficult to gain
the benefits of an information model and any graph technology which might be
suitable. Therefore, modification of the incoming data such that it adheres to
the “Vehicle” data model is required. The transformation is carried out using
the JSON to JSON transformation library “Jolt” [18]. An example of the post-
transform is presented in Figure 9.

1 {
2 "vin": {
3 "value": "7CKRXPHSZE"

4 },
5 "modelName": {
6 "value": "Mercedes -Benz EQC"

7 },
8 "name": {
9 "value": "GOHGTXXM"

10 },
11 "licensePlate": {
12 "value": "BMW -7447"

13 },
14 "modelYear": {
15 "value": 2013

16 },
17 ...

18 }

Fig. 8. JSON data from High-Mobility API

Another feature of note is the treatment of metadata. In our scenario, we
make use of the fact that certain data points remain static throughout the data
lifecycle, e.g, colour or VIN. We treat this metadata separately to the discrete
data points by storing the metadata in the knowledge graph and linking the
metadata to the data via a unique id. This is critical as without this linking
concept there is no way to search the metadata index and then retrieve the
required data object.

Using the Dell EMC schema, there now exists an NGSI-LD compliant doc-
ument however the need to make use of a semantic knowledge graph makes
further conversion necessary. This conversion is carried out in a similar fashion,
i.e. via “Jolt”, resulting in a JSON-LD document similar to that presented in
Figure 10. Data and metadata is also split just prior to this conversion and the
data is stored in the object store as a dataset, an example of which is also in
Figure 10. Vehicle metadata is defined as vehicle data describing the vehicle, e.g.



10 O’Mahony et al.

1 {
2 "type": "Vehicle",

3 "category": {
4 "value": [

5 "private"

6 ]

7 },
8 "refVehicleModel": {
9 "type": "Property",

10 "value": "Mercedes -Benz EQC"

11 },
12 "speed": {
13 "type": "Property",

14 "value": "76",

15 "observedAt": "2020-04-23 15:00:55.219231"

16 },
17 ...

18 }

Fig. 9. JSON data to NGSI-LD

colorName. Vehicle attributes which regularly change (e.g. speed or location) are
treated differently and are linked via a URI and are stored in the object store.
Figure 11 and Figure 12 show how this link between the metadata and the object
store is constructed. At this point the document is converted to N-Triples which
is suitable for ingestion into the data markets metadata index (Apache Jena).

4.2 MOSAICrOWN Policy Specification Language

The MOSAICrOWN policy specification language [19] is a deliverable of the
MOSAICrOWN project. The automotive use case described in MOSAICrOWN
relates to the automotive domain and aims at addressing the data privacy issues
related to electric vehicles. The policy model and language designed to address
these issues is concerned with data wrapping and sanitization in order to protect
sensitive portions of private data while facilitating the use of this data in a
collaborative data market. The automotive scenario includes three main parties:
i) data owners (drivers) ingesting their data into the data market; ii) consumers
accessing data in the data market; iii) the data market provider offering storage
and computation services to data owners and consumers. From an initial analysis,
subjects, transformations, datasets, metadata, operations, and purposes were
identified as basic elements of the policy model that also needs to be captured
by the policy language. An example of a policy is presented in Figure 13



Using automotive property graph-based data models in a knowledge graph 11

1 {
2 "id": "urn:ngsi -ld:Vehicle:5FSQC8LARN",

3 "@context": [

4 {
5 "id": "@id",

6 "type": "@type",

7 "dataCreated": {
8 "@id": "http://purl.org/dc/terms/modified",

9 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"

10 }
11 },
12 "http:// dellemc.com:8080/icv/schema.json"

13 ],

14 "dataset": {
15 "id": "http://172.17.0.2:50070/webhdfs/v1/data/cce23594-2

744-401b-9f9c-37c703d2e925",

16 "dateCreated": "2021-07-06T10:44:46.612Z"

17 },
18 "vin":"5FSQC8LARN",

19 "name":"USWUZXZE",

20 "privacyPolicy": "http:// dellemc.com/policy/

leastPrivatePolicies",

21 "modelName":"Mercedes -Benz EQC"

22 ...

23 }

Fig. 10. NGSI-LD data to JSON-LD

Fig. 11. Use of additional node to allow for internal structure in a dataset



12 O’Mahony et al.

1 {
2 "dataset": {
3 "@id": "http:// dellemc.com:8080/icv/dataset",

4 "@type": "@id"

5 },
6 }

Fig. 12. Additional property needed to represent data of vehicle

1 "@context": [

2 "http://www.w3.org/ns/odrl.jsonld",

3 "http:// localhost:8000/ns/mosaicrown/namespace.jsonld"

4 ],

5 "@type": "Set",

6 "uid": "https:// dellemc.com/policy/leastPrivatePolicies",

7 "permission": [

8 {
9 "uid": "https:// dellemc.com/policy/

leastPrivatePolicies_perm",

10 "assignee": "https:// dellemc.com/user/fleetmanager",

11 "target": [

12 "https:// dellemc.com/icv/licensePlate",

13 "https:// dellemc.com/icv/vin",

14 "https:// dellemc.com/icv/name"

15 ],

16 "action": ["odrl:read","odrl:use","odrl:write","odrl:sell

","odrl:sellReport"],

17 "purpose": ["statistical", "marketing"]

18 }
19 ]

Fig. 13. Example MOSAICrOWN policy for automotive data which allows allows
<user> to <action> on <target> for <purpose>



Using automotive property graph-based data models in a knowledge graph 13

4.3 Application of RDF-star to Vehicle Data

RDF-star is designed to assist in the expression of more complex relationships
when compared to RDF[20]. It achieves this through allowing for the annotation
of information to edges within the graph. Furthermore, a growing number of
tools, e.g., Ontotext GraphDB [9], have support for RDF-star and SPARQL-
star. At the time of writing this paper, policy enforcement is the responsibility
of the policy engine [19] developed for MOSAICrOWN, however it is envisaged
that a scenario in the future where the association of a specific permission with
a triple as an annotation might be required. As MOSAICrOWN uses some of
the W3C’s ODRL data policy model to construct the policy language, it aligns
well with the approach of using linked data and RDF. An example of such an
annotation is presented in Figure 14, where an RDF-star annotation is added
to indicate that at the speed of 50 kilometers per hour the driver of the vehicle
allows the speed to be used for odrl:statistical purposes, but not odrl:marketing.
This indicates that the data owner allows for their speed to be aggregated for
analysis, but not for specifically targeted commercial purposes.

Fig. 14. RDF-star example using MOSAICrOWN policy language to annotate RDF

At the time of development, it was deemed that the tool support and status of
the RDF-star standard was not sufficiently stable for use in the MOSAICrOWN



14 O’Mahony et al.

project, however this will be revisited in the future as new, more expressive,
metadata requirements are identified.

5 Conclusions

In this paper an automotive use case which uses a property graph-based data
model in conjunction with a data market metadata index which is implemented
as an RDF semantic graph is presented. The various graph and data formats
which were evaluated for suitability were also discussed. The method for in-
terchanging between these models is useful for the situation where one data
model better represents the real-world data in a more complete fashion than the
other however challenges in this interchanging had to be overcome. The reasons,
problems, and solutions encountered in this effort were presented and discussed.
Finally, the benefit of RDF-star for the automotive use case combined with data
policy was considered, and this extension appears to have use for policy anno-
tation in a privacy-centric data market.

References

1. Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM
Computing Surveys (CSUR), 40(1):1–39, 2008.

2. GO Blog. Introducing the knowledge graph: thing, not strings. Introducing the
Knowledge Graph: things, not strings, 2012.

3. Nico Baken. Linked Data for Smart Homes: Comparing RDF and Labeled Prop-
erty Graphs. In LDAC2020—8th Linked Data in Architecture and Construction
Workshop, pages 23–36, 2020.

4. Álvaro Alonso, Alejandro Pozo, José Manuel Cantera, Francisco De la Vega, and
Juan José Hierro. Industrial data space architecture implementation using FI-
WARE. Sensors, 18(7):2226, 2018.

5. MOSAICrOWN – Multi-Owner data Sharing for Analytics and Integration re-
specting Confidentiality and OWNer control. https://mosaicrown.eu/. (Accessed
on 07/06/2021).

6. Sumit Purohit, Nhuy Van, and George Chin. Semantic property graph for scalable
knowledge graph analytics. arXiv preprint arXiv:2009.07410, 2020.

7. Rana Alotaibi, Chuan Lei, Abdul Quamar, Vasilis Efthymiou, and Fatma Özcan.
Property graph schema optimization for domain-specific knowledge graphs. In 2021
IEEE 37th International Conference on Data Engineering (ICDE), pages 924–935.
IEEE, 2021.

8. Daniel Hernández, Aidan Hogan, and Markus Krötzsch. Reifying rdf: What works
well with wikidata? SSWS@ ISWC, 1457:32–47, 2015.

9. Ahren Edgar Lehnert and Robert Thomas Kasenchak. Use Case: Ontologies and
RDF* for Knowledge Management. European Semantic Web Conference ESWC,
2021.

10. A JSON-based Serialization for Linked Data. https://www.w3.org/TR/json-ld11/.
11. Nikos Kalatzis, George Routis, Yiorgos Marinellis, Marios Avgeris, Ioanna Rous-

saki, Symeon Papavassiliou, and Miltiades Anagnostou. Semantic interoperability
for iot platforms in support of decision making: an experiment on early wildfire
detection. Sensors, 19(3):528, 2019.



Using automotive property graph-based data models in a knowledge graph 15

12. What is NGSI-LD? https://github.com/FIWARE/tutorials.Linked-Data.
13. NGSI-LD HOWTO. https://fiware-datamodels.readthedocs.io/en/latest/ngsi-

ld howto/index.html.
14. A line-based syntax for an RDF graph. https://www.w3.org/TR/n-triples/.
15. High mobility · privacy-centric car data. https://about.high-mobility.com/. (Ac-

cessed on 06/29/2021).
16. datamodel.transportation/vehicle at master · smart-data-

models/datamodel.transportation · github. https://github.com/smart-
data-models/dataModel.Transportation/tree/master/Vehicle. (Accessed on
06/29/2021).

17. ISO - ISO 3779:2009 - Road vehicles — Vehicle identification number (VIN) —
Content and structure. https://www.iso.org/standard/52200.html. (Accessed on
08/25/2021).

18. Elias Al-Tai. An evaluation of the expressive power and performance of JSON-to-
JSON transformation languages, 2018.

19. Pierangela Samarati and Rigo Wenning W3C. First Version of Policy Specification
Language and Model. MOSAICrOWN Project Deliverable 3.3, June 2020.

20. Bob Kasenchak, Ahren Lehnert, and Gene Loh. Use Case: Ontologies and RDF-
Star for Knowledge Management. In Ruben Verborgh, Anastasia Dimou, Aidan
Hogan, Claudia d’Amato, Ilaria Tiddi, Arne Bröring, Simon Maier, Femke Onge-
nae, Riccardo Tommasini, and Mehwish Alam, editors, The Semantic Web: ESWC
2021 Satellite Events, pages 254–260, Cham, 2021. Springer International Publish-
ing.


